

PAPER NAME : Microelectronics and VLSI Designs (EC-

702) & VLSI Design Lab (EC- 792)

PAPER CODE : EC 702 & EC 792

Course File

Course Title: Microelectronics and VLSI Designs (EC- 702) &VLSI Design Lab (EC- 792)

Semester: 1st Year 4th, 2016

Name of the Faculty: Prof. Manas Kumar Parai & Prof. Saroj Mondal

E-mail: manasparai@gmail.com, sarojmondal@gmail.com

Class Schedule:

	Lecture			Pract	ical
Tuesday	Wednesday	Thursday	Friday	Wednesday	Thursday
11.40am –	10.00am –	2.10pm –	2.10pm –	10.50am –	10.50am –
12.30pm	10.50am	3 pm	3 pm	1.20pm	1.20pm

• An additional Lecture per week (which is not as per university syllabus) has been incorporated for facilitating better understanding and coverage of the syllabus.

Hours for meeting students:

Tuesday	Thursday	Saturday	Other Days
1.30pm – 2.45pm	3pm – 4pm	1.30pm – 4pm	1.30pm – 2pm or by appointment

i) Course Objective

Student will possess sufficient knowledge about the principles of VLSI design, Fabrication Process and simulate large-scale Digital and Analog Integrated Circuits.

ii) Course Outcomes

i. After completion of this course the students are expected to be able to demonstrate following knowledge, skills and attitudes.

The student will be able to:

Outcomes						
	Describe the basic concept of VLSI design: Microelectronic evaluation,	70%				
EC702.1	Scale of Integration, Types of VLSI Chips, different design domains	marks				
	and design principles. [B.T. LEVEL 1]					

EC702.2	Understand Silicon Semiconductor Technology and CMOS processing technology: P-well, N-well, Twin Tub process, layout Design rules.	70% marks				
	[B.T. LEVEL 2]					
	Implement CMOS logic circuits, Complex logic circuits, Advanced	60%				
EC702.3	Logic circuits and different sequential CMOS logic circuits.					
	[B.T. LEVEL 3]					
	Test different combinational and sequential logic circuits and verify	75%				
EC702.4	their behavior with Spice Simulation and EDA tools for VLSI Design.	marks				
	[B.T. LEVEL 5]					
EC702.5	Design and develop CPLD/FPGA based small prototype.	95%				
EC/02.5	[B. T. LEVEL 6]	marks				

ii. Once the student has successfully complete this course, he/she must be able to answer the following questions or perform/demonstrate the following:

SI.	Question	BT Level					
1.	Describe the flow chart of VLSI Design Flow.	1					
2.	Explain with neat diagram the basic steps involved in fabrication Process flow.						
3.	Explain the Stick Diagram of 3-input NAND Gate.	2					
4.	Utilize the operation of CMOS Inverter circuit and Show the Voltage Transfer Characteristic.	3					
5.	Apply CMOS technology to implement Half Adder, Full Adder, D FF.	3					
6.	Construct a Resistor using Switched Capacitor.	3					
7.	Verify DC, AC and Transient response of different logic gates using Spice Simulation and EDA tools.	5					
8.	Test the operations of CMOS full adder, Flip-Flops, Counter, and Registers.	5					
9.	Design 12-bit CPU using VHDL to check its functions and validate on FPGA/CPLD.	6					

iii) Module Layout

Module	Lecture Hours	Laboratory hours
I. Introduction to VLSI Design	8 HRS.	6HRS.
II. Microelectronic Processes for VLSI Fabrication	10 HRS.	-
III. CMOS for Digital VLSI Circuits	12 HRS.	24HRS
IV. Analog VLSI Circuits	10 HRS.	-

iv) Textbooks

- 1. Digital Integrated Circuit, J. M. Rabaey, Chandrasan, Nicolic, Pearson Education.
- 2. CMOS Digital Integrated Circuit, S. M. Kang & Y. Leblebici, TMH.
- 3. Modern VLSI Design, Wayne Wolf, Pearson Education.
- 4. Advance Digital Design Using Verilog, Michel D. Celliti, PHI
- 5. M.J.S Smith, Application Specific Integrated circuits, Pearson.
- 6. P.J Anderson, The designer's guide to VHDL, Morgan Kaufman, 2nd edition, 2002.
- 7. W. Wolf, Modern VLSI Design: Systems on silicon, Pearson
- 8. G. Hatchel and F. Somenzi, logic Synthesis and verification Algorithms, Kluwer, 1998 **Reference books:**
- 1. Digital Integrated Circuits, Demassa & Ciccone, John Willey & Sons.
- 2. Modern VLSI Design: system on silicon, Wayne Wolf; Addison Wesley Longman Publisher
- 3. Basic VLSI Design, Douglas A. Pucknell & Kamran Eshranghian, PHI
- 4. CMOS Circuit Design, Layout & Simulation, R. J. Baker, H. W. Lee, D.E. Boyee, PHI
- 5. CMOS Analog Circuit Design by P.E. Allen & D.R. Holberg; OUP
- 6. J. Bhasker, A VHDL Primer, BS Publications/Pearson Education.

(v) Evaluation Scheme

1) Theory

Evaluation Criteria	Marks
Internal Exam*	15
Quiz Test	10
Attendance	5
University Exam	70
Total	100

* Two internal examinations are conducted; based on those two tests, average of them are considered in a scale of 15.

University Grading System:

Grade	Marks
0	90% and above
E	80 – 89.9%
А	70 – 79.9%
В	60 – 69.9%
С	50 – 59.9%
D	40 – 49.9%
F	Below 40%

2) Laboratory

Evaluation Criteria	Marks
Internal Exam*	40
University Exam	60
Total	100

*Internal Evaluation will be based on daily lab performance as per the following schedule:

Expt. No.	Experiment Name	Schedule	Marks (40)	
1	Familiarity with Spice simulation tool& EDA tools	6HRS.	6	
2	Spice Simulation of Inverter , NAND , NOR Gates	6 HRS.	6	
3	Design of CMOS XOR/XNOR Gates	3 HRS.	6	
4	Design of CMOS Full adder	3 HRS.	5	
5	Design of CMOS Flip flops (R-S ,D , J-K)	3 HRS.	5	
6	Design of 8 bit synchronous Counter	3 HRS.	5	
7	Design of 8 bit bi-directional register	3 HRS.	5	
8	Design of a 12 bit CPU with few instructions and implementation and validation on FPGA	3 HRS.	2	

Course target attainment levels:

Attainment Level	Inference	Marks
Attainment Level 1	50% of the students have attained more than	1
	the target level of that CO	Ŧ
Attainment Loval 2	60% of the students have attained more than	2
Attainment Level 2	the target level of that CO	Z
Attainment Level 3	70% of the students have attained more than	C
Attainment Level 3	the target level of that CO	3

Overall Course Attainment Target (70% of university and 30% of the internal exam) will be =Attainment Level 3

Target has been set on the basis of last year's performance / result by the students, student quality this year and difficulty level of the course.

(vi) Mapping of Course Outcomes and Program Outcomes:

Course Outcomes		Program Outcomes (POs)											P	SOs
	1.	2.	3.	4.	5.	6.	7.	8.	9.	10.	11.	12	1.	2.
EC 702.1	1	2	0	2	0	0	0	0	0	0	0	0	1	0
EC 702.2	1	2	0	2	0	0	0	0	2	0	0	0	1	2
EC 702.3	2	2	0	3	0	0	0	0	2	0	0	0	2	2
EC 702.4	1	2	0	3	0	0	0	0	2	0	0	0	2	2
EC 702.5	1	0	0	3	0	0	0	0	2	0	0	0	1	2
EC 702	1	2	0	3	0	0	0	0	2	0	0	0	1	2

- CO1, 2, 4 & 5 minimally satisfy whereasCO3 partially satisfies the application of knowledge of mathematics, science, engineering fundamentals to the solution of complex engineering problems (PO1).
- CO1, 2, 3 & 4 partially satisfies the ability of the student to identify, formulate, and analyze engineering problems to arrive at substantiated conclusions (PO2).
- CO3, 4 & 5 fully satisfies &1, 2 partially satisfy the research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions in the field of Electronics & Communication Engineering. (PO4).
- CO2, 3, 4 & 5 partially satisfies the student's ability to function effectively as an individual and as a member in a team (PO9).

(vii) Delivery Methodology

Outcome	Method	Supporting Tools	Demonstration
EC 702.1	Structured (Partially	Video Lecture, NPTEL	Basic concept of VLSI
	Supervised Whole-Class	materials	design
	Grouping)		
EC 702.2	Structured (Partially	Video Lecture, NPTEL	Microelectronic
	Supervised Whole-Class	materials	Processes for VLSI
	Grouping)		Fabrication
EC 702.3	Structured (Partially	Video Lecture, NPTEL	CMOS Analog and
	Supervised Whole-Class	materials	digital logic circuits
	Grouping)		
EC 702.4	Structured (Partially	Whiteboard &	Simulation using T-
	Supervised Independent	Marker, PPT	Spice & Xilinx
	work)	&Software Based	
EC 702.5	Structured (Partially	Whiteboard &	Simulation using T-
	Supervised Independent	Marker, PPT	Spice & Xilinx
	work)	&Software Based	

(viii) Assessment Methodology

Outcome	Assessment Tool	Specific Question/activity aligned to the Outcome	
	Internal Test	Q1. Draw the flow chart of VLSI Design Flow and Explain.	
EC 702.1	Quiz	 What is meant by the term VLSI? A device containing between (a) 10³ and 10⁵ transistors (b) 10⁵ and 10⁷ transistors(d) 10⁹ and 10 transistors Sub threshold operation occurs in (a) Strong inversion region (c) Saturation region (b) Weak inversion region (d) Cut-off region 	
	University Exam	1. Explain the basic block diagram of FPGA with diagram.	

	Internal Test	1. Explain with neat diagram the basic steps involved in fabrication Process flow
EC 702.2	Quiz	 Material used for the fabrication of gate in modern MOSFET is (a) Highly pure si (b) Highly pure SiO₂ (c) Epitaxial Si (b) Highly pure SiO₂ (c) Highly doped polysilicon Photo-etching is a process of (a) Selective removal of layer (c) Removal of photo-resist (b) Diffusion of impurities (d) Making dicing marks
	University Exam	1. Show the different steps to fabricate a CMOS Inverter
	Internal Test	1. Explain the operation of CMOS Inverter circuit and Show the Voltage Transfer Characteristic.
EC 702.3	Quiz	 i. AND terms are realized by which connections of NMOS in PDN (a) Series (c) parallel (b) Cascade (d) Either Series or Parallel ii. Which one effect does not cause any deviation of a Current Mirror circuit from the ideal situation? (a) Channel length modulation (c) imperfect geometrical matching (b) Threshold offset between the two transistors (d) DIBL effects
	University Exam	 Realize a 2:1MUX using CMOS Transmission gate. Design two inputs X-OR gate using CMOS Transmission gate. Realize a function using CMOS Transmission gate.
EC 702.4	Quiz	 i. The full form of VHDL is (a) Very High Digital Logic (b) Verilog Hardware Description Language (c) Very High Speed Digital Logic (d) None of these ii. In VHDL, Sequential statements are defined in the (a) Architecture (b) Process (c) Package (d) None of these
	Lab	 Using T-spice obtain the transient analysis of the CMOS Inverter. Write the VHDL code for a Half Adder Circuit in Dataflow style of modeling.
EC 702.5	Quiz	 i. In VHDL, Components must be declared (a) Within the architecture body (b) Anywhere in the program (c) In a separate VHDL file (d) Within the entity declaration

	ii. The if-else statements must be (a) Within a process block (b) Within the architecture body (c) Under the entity declaration (d) Within a while loop
Lab	Design of a 12 bit CPU with few instructions and implementation and validation on FPGA

(ix) A. Weekly Lesson Plan

1		Practical	Quiz
T	VLSI Design Concepts, Moor's Law,	Familiarity with	
	Scale of Integration (SSI, MSI, LSI,	Spice simulation	
	VLSI, ULSI, Types of VLSI Chips	tool& EDA tools	-
	(Analog & Digital VLSI chips)		
2	ASIC, PLA, FPGA, Design principles	Familiarity with	
	(Digital VLSI –Concept of	Spice simulation	
	Regularity, Granularity etc), Design	tool& EDA tools	-
	Domains (Behavioral, Structural		
	etc.)		
3	Silicon Semiconductor Technology-	Spice Simulation of	
	An Overview, Wafer processing,	Inverter	Quiz1: Based on
	Oxidation, Epitaxial deposition,		CO1.
	Ion-implantation & Diffusion,		Topic: Scale of
	Cleaning, Etching, Photo-		Integration, VLSI
	lithography – Positive & Negative		Design flow,
	photo-resist, Basic CMOS		Programmable
	Technology – (Steps in fabricating		Logic
	CMOS)		
4	Basic n-well CMOS process, p-well	Spice Simulation of	
	CMOS process, Twin tub Process	Inverter	-

5	Layout Design Rule: Stick diagram	Design of CMOS XOR/XNOR Gates	Quiz2: Based on CO2.
	with examples, CMOS inverter characteristics.	AUR/ANOR Gales	Topic: Fabrication
			Process, Design
			Rule.
6	NAND & NOR Gates, CMOS logic	Design of CMOS Full	
	circuits, Complex logic circuits	adder	-
7	CMOS Full Adder, CMOS	Design of CMOS Flip	
	Transmission GATE, Sequential	flops (R-S ,D , J-K)	
	CMOS logic circuits, SR Latch		-
	circuit.		
8	Clocked JK Latch/ Master-Slave JK,	Design of 8 bit	Quiz3: Based on
	CMOS D-latch & Edge triggered	synchronous	CO3.
	flip-flop, Analog VLSI design steps,	Counter	Topic: Design of
	Basic building blocks of Analog VLSI		Digital and Analog
	chips, MOS switch, Active load /		VLSI circuits
	resistors; Voltage dividers.		(Theoretical).
9	CMOS Current source & sink,	Design of 8 bit bi-	Quiz4: Based on
	CMOS Differential amplifier;	directional register	CO4.
	Output amplifiers [Basic circuits		Topic: Design of
	only].		Digital and Analog
			VLSI circuits (Lab
			Oriented).
10	CMOS OPAMP, Switched capacitor	Design of a 12 bit	
	filter.	CPU with few	
		instructions and	
		implementation and	
		validation on FPGA	
11	Discussion of WBUT question		Quiz5: Based on
	papers, Revision & Doubt Clearing		CO5.
			Topic: Design of
			Prototype.

B. Daily Lesson Plan

MODULE: 1

Title: Introduction to VLSI Design

Day 1, Tuesday, Date: 02.08.16 [11.40am to 12.30pm]

CONTENTS

Introduction to VLSI Design Concepts.

Discussion on course objectives and outcome, text & reference books, evaluation scheme and weekly lesson plan.

Topic/Unit/Chapter Objectives:

Broad Objectives of the chapter/topic are:

1. To gather the knowledge of Different VLSI designs Flow.

Once the student has completed this topic/ chapter he/she will be able to answer following questions/perform the following activities with Levels of Bloom's Taxonomy):

- 1. Draw the flow chart of VLSI Design Flow and Explain [L1]
- 2. What are different VLSI design styles? Explain each of them. [L2]

Remarks, if any

MODULE: 1 Title: Introduction to VLSI Design Day 2, Wednesday, Date: 03.08.16 [10.00am to 10.50am] CONTENTS Moor's Law, Scale of Integration (SSI, MSI, LSI, VLSI, ULSI) Topic/Unit/Chapter Objectives: Proad Objectives of the chapter/topic are:

Broad Objectives of the chapter/topic are:

- 1. To recognize the application areas of Moore's Law and the course in diverse disciplines.
- 2. To understand the level of complexity due to integration of analog and digital circuits embedded in single integrated circuit.

Once the student has completed this topic/ chapter he/she will be able to answer following questions/perform the following activities with Levels of Bloom's Taxonomy):

1. What is Moore's Law? Justify it. [L1].

2. Does the Moore's law satisfy the modern integration Technology? [L2]

Remarks, if any

MODULE: 1
Title: Introduction to VLSI Design
Day 3, Thursday, Date: 04.08.16 [2.10pm to 3.00pm]
CONTENTS
Types of VLSI Chips (Analog & Digital VLSI chips, General purpose, ASIC)
Topic/Unit/Chapter Objectives:
Broad Objectives of the chapter/topic are:
1. To understand basic difference between analog and digital VLSI chip.

2. To understand different types of ASICs available.

Once the student has completed this topic/ chapter he/she will be able to answer following questions/perform the following activities with Levels of Bloom's Taxonomy):

1. What is ASIC? [L1]

2. What are the different architectures available for the ASIC? [L1]

3. Explain the semi-custom and full-custom styles of VLSI System Design.

4. What are different types of integrated circuits?

5. Explain the gate-array based VLSI system design.

6. Explain the standard cell based VLSI system design.

Remarks, if any

MODULE: 1

Title: Introduction to VLSI Design

Day 4, Friday, Date: 05.08.16 [2.10pm to 3.00pm]

CONTENTS

Programmable Logic Devices. PAL

Topic/Unit/Chapter Objectives:

Broad Objectives of the chapter/topic are:

1. To understand the operation of Programmable logic devices.

2. To implement different functions using PAL

Once the student has completed this topic/ chapter he/she will be able to answer following questions/perform the following activities with Levels of Bloom's Taxonomy):

1. Realize 1 bit full adder circuit using PAL. [L3]

Remarks, if any

MODULE: 1

Title: Introduction to VLSI Design

Day 5, Tuesday, Date: 09.08.16 [11.40am to 12.30pm]

CONTENTS

Programmable Logic Devices. PLA & PROM.

Topic/Unit/Chapter Objectives:

Broad Objectives of the chapter/topic are:

- 1. To understand the operation of Programmable logic Array and PROM.
- 2. To implement different functions using PLA & PPROM.

Once the student has completed this topic/ chapter he/she will be able to answer following questions/perform the following activities with Levels of Bloom's Taxonomy):

1. Realize 1 bit full adder circuit using PLA & PROM. [L2, L3]

Remarks, if any

MODULE: 1

Title: Introduction to VLSI Design

Day 6, Wednesday, Date: 10.08.16 [10.00am to 10.50am]

CONTENTS

CPLD, FPGA

Topic/Unit/Chapter Objectives:

Broad Objectives of the chapter/topic are:

- 1. To understand the Internal Architecture of CPLD & FPGA.
- 2. To implement different functions using CPLD & FPGA.

Once the student has completed this topic/ chapter he/she will be able to answer following questions/perform the following activities with Levels of Bloom's Taxonomy):

1. Explain the basic building block of FPGA with diagram [L1]

2. Explain the basic building block of CPLD with diagram [L2]

3. Implementation of a function using CPLD & FPGA. [L2, L3]

Remarks, if any

MODULE: 1

Title: Introduction to VLSI Design

Day 7, Thursday, Date: 11.08.16 [2.10pm to 3.00pm]

CONTENTS

Design principles (Digital VLSI – Concept of Regularity, Granularity, modularity, Localityetc)

Topic/Unit/Chapter Objectives:

Broad Objectives of the chapter/topic are:

1. To understand the concept of Regularity, Granularity, modularity, Locality.

Once the student has completed this topic/ chapter he/she will be able to answer following questions/perform the following activities with Levels of Bloom's Taxonomy):

1. What are regularity, Granularity, modularity and Locality? [L1]

2. What are their significances in modern IC technology? [L2]

Remarks, if any

MODULE: 1

Title: Introduction to signal and systems

Day 8, Friday, Date: 12.08.16 [2.10pm to 3.00pm]

CONTENTS

Different Design Domains (Behavioral, Structural, Physical etc.)

Topic/Unit/Chapter Objectives:

Broad Objectives of the chapter/topic are:

1. To understand the VLSI Design Domains.

Once the student has completed this topic/ chapter he/she will be able to answer following questions/perform the following activities with Levels of Bloom's Taxonomy):

- 1. Draw the Y-Chart and explain the VLSI design process. [L1]
- 2. What do you mean by Hierarchical Abstraction?

Remarks, if any

Day 9, Tuesday, Date: 16.08.16 [11.40am to 12.30pm]

CONTENTS

Silicon Semiconductor Technology- AnOverview, Wafer processing, Oxidation, Epitaxial deposition, Ion-implantation & Diffusion.

Topic/Unit/Chapter Objectives:

Broad Objectives of the chapter/topic are:

1. To understand the basics of Silicon Semiconductor Technology.

Once the student has completed this topic/ chapter he/she will be able to answer following questions/perform the following activities with Levels of Bloom's Taxonomy):

1. Explain the fabrication of SiO_2 using wet oxidation technique. Explain the relative merits and demerits over the dry one [L2]

2. List the processes for fabrication of VLSI circuits. [L1]

3.Discuss the chemical vapour deposition process for VLSI. [L1]

4. Describe the Si oxidation mechanism. What are the uses of SiO₂in VLSI circuits[L1]

Remarks, if any

MODULE: 2

Title: Micro-electronic Processes for VLSI Fabrication

Day 10, Wednesday, Date: 17.08.16.15 [10.00am to 10.50am]

CONTENTS

Cleaning, Etching, Photo-lithography – Positive & Negative photo-resist.

Topic/Unit/Chapter Objectives:

Broad Objectives of the chapter/topic are:

1. To understand the basics of Silicon Semiconductor Technology.

Once the student has completed this topic/ chapter he/she will be able to answer following questions/perform the following activities with Levels of Bloom's Taxonomy):

1. What is meant by a clean room class? [L2]

2. Describe briefly how you can achieve the desired clean room condition necessary for IC fabrication. [L2]

3. Compare wet etching and dry etching. [L2]

4. What are different types of lithography process? [L1]

5. Discuss the various steps of wafer preparation. [L1]

Remarks, if any

MODULE: 2

Title: Micro-electronic Processes for VLSI Fabrication

Day 11, Thursday, Date: 18.08.16 [2.10pm to 3.00pm]

CONTENTS

Basic CMOS Technology – (Steps in fabricating CMOS)

Topic/Unit/Chapter Objectives:

Broad Objectives of the chapter/topic are:

1. Understand the basic steps involved in fabricating CMOS.

Once the student has completed this topic/ chapter he/she will be able to answer following

questions/perform the following activities with Levels of Bloom's Taxonomy):

1. Explain with neat diagram the basic steps involved in fabrication Process flow[L3]

2. Why is metallization needed in the final step of IC fabrication? What materials are suitable for this purpose? [L3]

Remarks, if any

MODULE: 2	
Title: Micro-electronic Processes for VLSI Fabri	ication
Day 12, Friday, Date: 19.08.16 [2.10pm to 3.00p	pm]
CONTENTS	
Basic n-well CMOS process	
Topic/Unit/Chapter Objectives:	
Broad Objectives of the chapter/topic are:	
1. Understand the basic steps involved in fabric	cating NMOS process.
Once the student has completed this topic/	chapter he/she will be able to answer following
questions/perform the following activities with	Levels of Bloom's Taxonomy):
1. Describe how anMOS device is fabricated? U	se diagram to show the steps. [L2]
2. What are the uses of poly-Si? [L2]	
3. How is metallization done in VLSI fabrication	? [L2]
Quiz Based on CO1:	
i. What is meant by the term VLSI?	
A device containing between	
(b) 10^3 and 10^5 transistors	(c) 10^7 and 10^9 transistors
10^5 and 10^7 transistors	(d) 10 ⁹ and 10 ¹¹ transistors
ii. Subthreshold operation occurs in	
(c) Strong inversion region	(c) Saturation region(d) Cut-off region
(d) Weak inversion region	
Remarks, if any	

MODULE: 2
Title: Micro-electronic Processes for VLSI Fabrication
Day 13, Tuesday, Date: 23.08.16 [11.40am to 12.30pm]
CONTENTS
Basic n-well CMOS process
Topic/Unit/Chapter Objectives:
Broad Objectives of the chapter/topic are:
1. Understand the basic steps involved in fabricating n-Well CMOS process
Once the student has completed this topic/ chapter he/she will be able to answer following
questions/perform the following activities with Levels of Bloom's Taxonomy):

1. Draw the device structure of CMOS Inverter. [L2]

2. Show the different steps to fabricate a CMOS Inverter [L2]

Remarks, if any

MODULE: 2

Title: Micro-electronic Processes for VLSI Fabrication

Day 14, Wednesday, Date: 24.08.16 [10.00am to 10.50am]

CONTENTS

p-well CMOS process

Topic/Unit/Chapter Objectives:

Broad Objectives of the chapter/topic are:

1. Understand the basic steps involved in fabricating p-Well CMOS process

Once the student has completed this topic/ chapter he/she will be able to answer following questions/perform the following activities with Levels of Bloom's Taxonomy):

1. Draw the device structure of CMOS Inverter. [L2]

2. Show the different steps to fabricate a CMOS Inverter [L2]

Remarks, if any

MODULE: 2

Title: Micro-electronic Processes for VLSI Fabrication

Day 15, Friday, Date: 26.08.16 [2.10pm to 3.00pm]

CONTENTS

Twin tub Process

Topic/Unit/Chapter Objectives:

Broad Objectives of the chapter/topic are:

1. Understand the basic steps involved in fabricating Twin-Tub CMOS process

Once the student has completed this topic/ chapter he/she will be able to answer following questions/perform the following activities with Levels of Bloom's Taxonomy):

1. Draw the device structure of CMOS Inverter. [L2]

2. Show the different steps to fabricate a CMOS Inverter [L2]

Remarks, if any

MODULE: 2

Title: Micro-electronic Processes for VLSI Fabrication

Day 16, Tuesday, Date: 30.08.16 [11.40am to 12.30pm]

CONTENTS

Twin tub Process

Topic/Unit/Chapter Objectives:

Broad Objectives of the chapter/topic are:

1. Understand the basic steps involved in fabricating Twin-Tub CMOSprocess.

Once the student has completed this topic/ chapter he/she will be able to answer following questions/perform the following activities with Levels of Bloom's Taxonomy):

1. Draw the device structure of CMOS Inverter. [L2]

2. Show the different steps to fabricate a CMOS Inverter [L2]

Remarks, if any

MODULE: 2

Title: Micro-electronic Processes for VLSI Fabrication

Day 17, Wednesday, Date: 31.08.16 [10am to 10.50am]

CONTENTS

Layout Design Rule

Topic/Unit/Chapter Objectives:

Broad Objectives of the chapter/topic are:

1. Understand how to design the layout of a circuit following the design rule.

Once the student has completed this topic/ chapter he/she will be able to answer following questions/perform the following activities with Levels of Bloom's Taxonomy):

1. What is DRC in context of layout design?[L2]

2. Discuss the design rules in details. [L2]

Remarks, if any

MODULE: 2

Title: Micro-electronic Processes for VLSI Fabrication

Day 18, Thursday, Date: 01.09.16 [2.10pm to 3.00pm]

CONTENTS

Stick diagram with examples

Topic/Unit/Chapter Objectives:

Broad Objectives of the chapter/topic are:

1. Understand the basic concepts of Stick diagram.

Once the student has completed this topic/ chapter he/she will be able to answer following questions/perform the following activities with Levels of Bloom's Taxonomy):

1. What do you mean by DRC, LVS and extraction? [L2]

2. What is Stick diagram? Draw the stick diagram of CMOS 3-input NAND gate. [L3]

3. Draw the stick diagram of CMOS 2-input XOR gate. [L3]

Remarks, if any

MODULE: 3 Title: **CMOS for Digital VLSI Circuits** Day 19, Friday, Date: 02.09.16 [2.10pm to 3.00pm] CONTENTS CMOS inverter characteristics Topic/Unit/Chapter Objectives: Broad Objectives of the chapter/topic are:

1. Understand the operation of CMOS Inverter.

2. Understand the Voltage Transfer characteristics of CMOS Inverter.

3. Understand the Layout, power and area requirement

Once the student has completed this topic/ chapter he/she will be able to answer following questions/perform the following activities with Levels of Bloom's Taxonomy):

1. Explain the operation of CMOS Inverter circuit [L2]

2. Show the Voltage Transfer Characteristic. [L2]

Quiz Based on CO2:

- 3. Material used for the fabrication of gate in modern MOSFET is
 - (c) Highly pure si

(c) Epitaxial Si

(d) Highly pure SiO₂

(d) Highly doped polysilicon

4. Photo-etching is a process of

(d) Diffusion of impurities

(c) Selective removal of layer

- (c) Removal of photo-resist
- (d) Making dicing marks

Remarks, if any

MODULE: 3

Title: CMOS for Digital VLSI Circuits

Day 20, Tuesday, Date: 06.09.16 [11.40am to 12.30pm]

CONTENTS

CMOS inverter characteristics

Topic/Unit/Chapter Objectives:

Broad Objectives of the chapter/topic are:

1. Understand the calculation of different parameters and design of CMOS inverter.

2. Understand the Noise Immunity and Noise Margin.

Once the student has completed this topic/ chapter he/she will be able to answer following questions/perform the following activities with Levels of Bloom's Taxonomy):

1. What is noise immunity and noise margin? [L1]

2. How to calculate the different voltages involved to draw the Voltage Transfer Characteristics. [L2]

3. How to design a CMOS Inverter? [L2]

4. Draw the Layout and Stick diagram of CMOS Inverter. [L3]

Remarks, if any

MODULE: 3

Title: CMOS for Digital VLSI Circuits

Day 21, Wednesday, Date: 07.09.16 [10am to 10.50am]

CONTENTS

NAND & NOR Gates

Topic/Unit/Chapter Objectives:

Broad Objectives of the chapter/topic are:

1. Understand the design procedure for implementing CMOS NAND and NOR gates.

Once the student has completed this topic/ chapter he/she will be able to answer following questions/perform the following activities with Levels of Bloom's Taxonomy):

1. How to design CMOS Logic gates? [L2]

2. Draw the Layout and Stick diagram of CMOS NAND and NOR gates.[L3]

Remarks, if any

MODULE: 3
Title: CMOS for Digital VLSI Circuits
Day 22, Thursday, Date: 08.09.16 [2.10pm to 3.00pm]
CONTENTS
CMOS logic circuits
Topic/Unit/Chapter Objectives:
Broad Objectives of the chapter/topic are:
1. Understand the design procedure for implementing CMOS logic circuits.
Once the student has completed this topic/ chapter he/she will be able to answer following
questions/perform the following activities with Levels of Bloom's Taxonomy):
1. How to design any CMOS Logic circuits? [L3]
2. Draw the Layout and Stick diagram of CMOS Logic gates and simple logic circuits. [L3]

Remarks, if any

MODULE: 3

Title: CMOS for Digital VLSI Circuits

Day 23, Friday, Date: 09.09.16 [2.10pm to 3.00pm]

CONTENTS

Complex logic circuits

Topic/Unit/Chapter Objectives:

Broad Objectives of the chapter/topic are:

1. Understand the design procedure for implementing Complex CMOS logic circuits.

Once the student has completed this topic/ chapter he/she will be able to answer following questions/perform the following activities with Levels of Bloom's Taxonomy):

1. Draw the Layout and Stick diagram of CMOS complex logic circuits. [L3]

Remarks, if any

MODULE: 3

Title: CMOS for Digital VLSI Circuits

Day 24, Tuesday, Date: 13.09.16 [11.40am to 12.30pm]

CONTENTS

Complex logic circuits.

Topic/Unit/Chapter Objectives:

Broad Objectives of the chapter/topic are:

1. Knowledge on designing complex logic circuits

Once the student has completed this topic/ chapter he/she will be able to answer following questions/perform the following activities with Levels of Bloom's Taxonomy):

1. Draw the Layout and Stick diagram of CMOS complex logic circuits. [L3]

Remarks, if any

MODULE: 3

Title: CMOS for Digital VLSI Circuits

Day 25, Wednesday, Date: 14.09.16 [10.00pm to 10.50am]

CONTENTS

CMOS Full Adder

Topic/Unit/Chapter Objectives:

Broad Objectives of the chapter/topic are:

- 1. Understand the design procedure for implementing CMOS Full Adder Circuit.
- 2. Simplification of designing by using suitable techniques

Once the student has completed this topic/ chapter he/she will be able to answer following questions/perform the following activities with Levels of Bloom's Taxonomy):

- 1. Design a CMOS Half Adder Circuit. [L3]
- 2. Draw the CMOS full adder circuit and explain its operation. [L3]

3. Draw Stick diagram of CMOS complex logic circuits. [L3]

Remarks, if any

MODULE: 3

Title: CMOS for Digital VLSI Circuits

Day 26, Thursday, Date: 15.09.16 [2.10pm to 3.00pm]

CONTENTS

CMOS Transmission GATE

Topic/Unit/Chapter Objectives:

Broad Objectives of the chapter/topic are:

- 1. Understand the operation of Transmission GATE
- 2. Reduction of the complexity using transmission gate technology.
- 3. Knowledge on designing complex logic circuits using transmission gate

Once the student has completed this topic/ chapter he/she will be able to answer following questions/perform the following activities with Levels of Bloom's Taxonomy):

- 1. Realize a 2:1MUX using CMOS Transmission gate. [L5]
- 2. Design two inputs X-OR gate using CMOS Transmission gate. [L5]
- 3. Realize a function using CMOS Transmission gate. [L5]

Remarks, if any

MODULE: 3

Title: CMOS for Digital VLSI Circuits

Day 27, Friday, Date: 16.09.16 [2.10pm to 3.00pm]

CONTENTS

Sequential CMOS logic circuits, SR Latch circuit

Topic/Unit/Chapter Objectives:

Broad Objectives of the chapter/topic are:

1. Understand the design procedure for implementing Sequential CMOS logic circuits.

Once the student has completed this topic/ chapter he/she will be able to answer following questions/perform the following activities with Levels of Bloom's Taxonomy):

1. Design a CMOS NAND Based SR Latch Circuit. [L3]

Remarks, if any

MODULE: 3

Title: CMOS for Digital VLSI Circuits

Day 28, Tuesday, Date: 27.9.16 [11.40am to 12.30pm]

CONTENTS

Sequential CMOS logic circuits, SR Latch circuit

Topic/Unit/Chapter Objectives:

Broad Objectives of the chapter/topic are:

1. Understand the design procedure for implementing Sequential CMOS logic circuits.

Once the student has completed this topic/ chapter he/she will be able to answer following questions/perform the following activities with Levels of Bloom's Taxonomy):

1. Design a CMOS NOR Based SR Latch Circuit. [L3]

Remarks, if any

MODULE: 3

Title: CMOS for Digital VLSI Circuits

Day 29, Wednesday, Date: 28.9.16 [10.00pm to 10.50am]

CONTENTS

Clocked JK Latch/ Master-Slave JK

Topic/Unit/Chapter Objectives:

Broad Objectives of the chapter/topic are:

1. Understand the design procedure for implementing CMOS Clocked JK Latch/ Master-Slave JKFF Circuit.

Once the student has completed this topic/ chapter he/she will be able to answer following questions/perform the following activities with Levels of Bloom's Taxonomy):

1. Design a CMOS NAND Based Clocked JK Latch/ Master-Slave JK FF Circuit. [L3]

Remarks, if any

MODULE: 3

Title: CMOS for Digital VLSI Circuits

Day 30, Thursday, Date: 29.09.16 [2.10pm to 3.00pm]

CONTENTS

CMOS D-latch & Edge triggered flip-flop

Topic/Unit/Chapter Objectives:

Broad Objectives of the chapter/topic are:

1. Understand the design procedure for implementing CMOS Clocked JK D FF Circuit.

Once the student has completed this topic/ chapter he/she will be able to answer following questions/perform the following activities with Levels of Bloom's Taxonomy):

1. Realize a D FF using CMOS Transmission gate. [L6]

Remarks, if any

MODULE: 4

Title: Analog VLSI Circuits

Day 31, Tuesday, Date: 04.10.16 [11.40am to 12.30pm]

CONTENTS

Analog VLSI design steps, Basic building blocks of Analog VLSI chips

Topic/Unit/Chapter Objectives:

Broad Objectives of the chapter/topic are:

- 1. Understand the design steps involved in designing Analog VLSI processes.
- 2. Understand the Basic building blocks of Analog VLSI chips.

Once the student has completed this topic/ chapter he/she will be able to answer following questions/perform the following activities with Levels of Bloom's Taxonomy):

- 1. What are the different steps involved in designing analog IC? [L1]
- 2. What are the Basic building blocks of Analog VLSI chips? [L1]

Remarks, if any

MODULE: 4

Title: Analog VLSI Circuits

Day 32, Wednesday, Date: 05.10.16 [10.00pm to 10.50am]

CONTENTS

MOS switch, Active load / resistors; Voltage dividers

Topic/Unit/Chapter Objectives:

Broad Objectives of the chapter/topic are:

- 1. To gather the Knowledge of using the MOSFET as a switch, resistor.
- 2. To understand the operation of voltage divider.

Once the student has completed this topic/ chapter he/she will be able to answer following questions/perform the following activities with Levels of Bloom's Taxonomy):

- 1. What is a MOS switch? [L2]
- 2. How is it different from CMOS switch? [L4]
- 3. Draw the resistance characteristics of the CMOS switch. [L3]
- 4. What is MOS diode/active resistor? [L1]
- 5. Draw the small signal equivalent circuit and find the expression for output resistance. [L5]
- 6. Explain with circuit diagram and necessary expressions how voltage division is achieved using MOS circuits. [L4]

Remarks, if any

MODULE: 4

Title: Analog VLSI Circuits

Day 33, Tuesday, Date: 18.10.16 [11.40am to 12.30pm]

CONTENTS

CMOS Current source & sink

Topic/Unit/Chapter Objectives:

Broad Objectives of the chapter/topic are:

- 1. Understand the Characteristics of CMOS Current source &sink.
- 2. To apply the technique to increase the output resistance.
- 3. Understand the operation of cascade current sink.

Once the student has completed this topic/ chapter he/she will be able to answer following questions/perform the following activities with Levels of Bloom's Taxonomy):

- 1. Explain how a MOSFET can be used as Current source & sink. [L4]
- 2. Explain the operation of the MOS current reference circuit with circuit diagram. [L3]
- 3. How the output resistance of current sink can be increased? [L5]
- 4. Draw the equivalent circuit of cascade current sink and explain its operation. [L2]

Remarks, if any

MODULE: 4

Title: Analog VLSI Circuits

Day 34, Wednesday, Date: 19.10.16 [10.00pm to 10.50am]

CONTENTS

Current Mirror

Topic/Unit/Chapter Objectives:

Broad Objectives of the chapter/topic are:

- 1. Understand the operation of Current mirror circuit
- 2. Understand the deviation from ideal situation
- 3. Realization of cascade current mirror

Once the student has completed this topic/ chapter he/she will be able to answer following questions/perform the following activities with Levels of Bloom's Taxonomy):

- 1. What is the principle of operation of a current mirror? [L2]
- 2. How the circuit is affected due to deviation from ideal situation. [L5]
- 3. What is the principle of operation of a cascade current mirror? [L2]

Remarks, if any

MODULE: 4

Title: Analog VLSI Circuits

Day 35, Thursday, Date: 20.10.16 [2.10pm to 3.00pm]

CONTENTS

CMOS Differential amplifier

Topic/Unit/Chapter Objectives:

Broad Objectives of the chapter/topic are:

1. Understand the operation of CMOS differential amplifier.

Once the student has completed this topic/ chapter he/she will be able to answer following questions/perform the following activities with Levels of Bloom's Taxonomy):

1. Draw the CMOS differential amplifiercircuit and explain how it works as a differential amplifier? [L2]

Quiz Based on CO3:

- iii. AND terms are realized by which connections of NMOS in PDN
 - (c) parallel
 - (c) Series (d) Cascade (d) Either Series or Parallel
- iv. Which one effect does not cause any deviation of a Current Mirror circuit from the ideal situation?
 - (c) Channel length modulation (c) imperfect geometrical matching
 - (d) Threshold offset between the two transistors (d) DIBL effects

Remarks, if any

MODULE: 4

Title: Analog VLSI Circuits

Day 36, Friday, Date: 21.10.16 [2.10pm to 3.00pm]

CONTENTS

Output amplifiers

Topic/Unit/Chapter Objectives:

Broad Objectives of the chapter/topic are:

1. Understand the operation of Output amplifier.

Once the student has completed this topic/ chapter he/she will be able to answer following questions/perform the following activities with Levels of Bloom's Taxonomy):

- 1. What are purposes of an output amplifier? [12]
- 2. What are the implementation schemes? [L4]

Quiz Based on CO4:

i. The full form of VHDL is

(a) Very High Digital Logic (b) Verilog Hardware Description Language

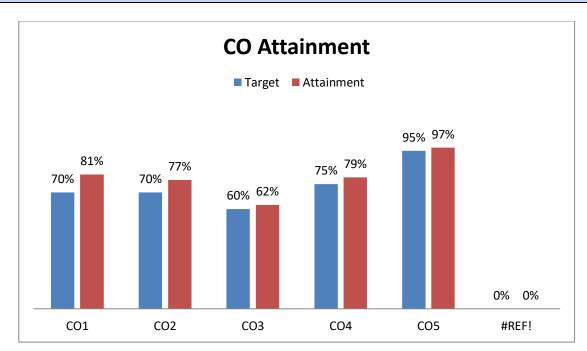
(c) Very High Speed Digital Logic (d) None of these
ii. In VHDL, Sequential statements are defined in the
(a) Architecture (b) Process (c) Package (d) None of these
Remarks, if any
MODULE: 4
Title: Analog VLSI Circuits
Day 37, Tuesday, Date: 25.10.16 [11.40am to 12.30pm]
CONTENTS
CMOS OPAMP
Topic/Unit/Chapter Objectives:
Broad Objectives of the chapter/topic are:
1. Understand the basic building blocks of CMOS OPAMP.
2. Compensation of CMOS OPAMP and its use.
Once the student has completed this topic/ chapter he/she will be able to answer following
questions/perform the following activities with Levels of Bloom's Taxonomy):
1. What are basic building blocks of CMOS OPAMP? Draw them. [L3]
2. What is compensation of CMOS OPAMP and why is it used?
Remarks, if any MODULE: 4
Title: Analog VLSI Circuits
Day 38, Wednesday, Date: 26.10.16 [10.00pm to 10.50am]
CONTENTS
Resistor Realization using Switched capacitor
Topic/Unit/Chapter Objectives:
Broad Objectives of the chapter/topic are:
1. Understand the operation of a switched capacitor.
2. Purpose of using switched capacitor instead of a resistor.
3. Realization of resistor using switched capacitor.
Once the student has completed this topic/ chapter he/she will be able to answer following
questions/perform the following activities with Levels of Bloom's Taxonomy):
1. Realize a resistor using switched capacitor. [L5]
2. What are the basic advantages and limitations of a switched capacitor? [L5]
3. Explain the working of a switched capacitor first order LPF with circuit diagram. [L3]
Remarks, if any
MODULE: 4
Title: Analog VLSI Circuits
Day 39, Thursday, Date: 27.10.16 [2.10pm to 3.00pm]
CONTENTS
Switched capacitor Filter
Topic/Unit/Chapter Objectives:
Broad Objectives of the chapter/topic are:
1. Understand the design steps involved in designing switched capacitor filter.
2. Understand the operation of switched capacitor filter.
Once the student has completed this topic/ chapter he/she will be able to answer following
questions/perform the following activities with Levels of Bloom's Taxonomy):
1. Explain the working of a switched capacitor first order LPE with circuit diagram. [L3]

Quiz Based on CO5:		
i. In VHDL, Componei	nts must be declared	
(e) Within the	e architecture body	
(f) Anywhere	in the program	
(g) In a separ	ate VHDL file	
(h) Within the	e entity declaration	
ii. The if-else stateme	nts must be	
(e) Within a p	rocess block	
(f) Within the	e architecture body	
(g) Under the	entity declaration	
(h) Within a v	vhile loop	

(x) Teaching Strategy/Method

- Learning by Recapitulating the previous knowledge and understanding the topic based on memorizing them. If students fail to give any answer of the questions from the previous semesters it is advised to cover the topics from books, internet or any other resources. Sometimes video lecture, NPTEL study materials are very much useful for the students to clear their doubt. So resources are provided them to gather knowledge. Students share their knowledge through verbal discussion or by using social networks keeping in mind that "it is easy to gather knowledge but it is not so easy to assimilate". Sharing of knowledge can increase the level of knowledge.
- **Drawing suitable Analogy**: Wherever necessary analogy helps the students to make them understand in better way.
- Solving the numerical problems not only engage the students but also help them to think, understand and write the topic. Doubts are cleared during solving a problem.
- **Simulation** through EDA tools validates the theoretical knowledge. Sometimes the students expect the result of the theoretical part by simulating the circuit or any model. In this way their interest level may be uplifted.
- Question and Answer sessions clears the doubts. If the questions are repeatedly asked and the answers are also discussed repeatedly the weak students can remember them very easily. Next time they will be able to answer.

(xa) Strategy to support weak students


- Forming a pair with the bright students
- Reviewing the real problem sympathetically. Motivating them to do the classes regularly and encouraging by floating easy questions in the theory classes.
- Advising them for getting additional help from teachers as well as bright student.
- Providing continuous assistance.
- Additional doubt clearing sessions (Beyond Class hours)

(xb) Strategy to encourage bright students

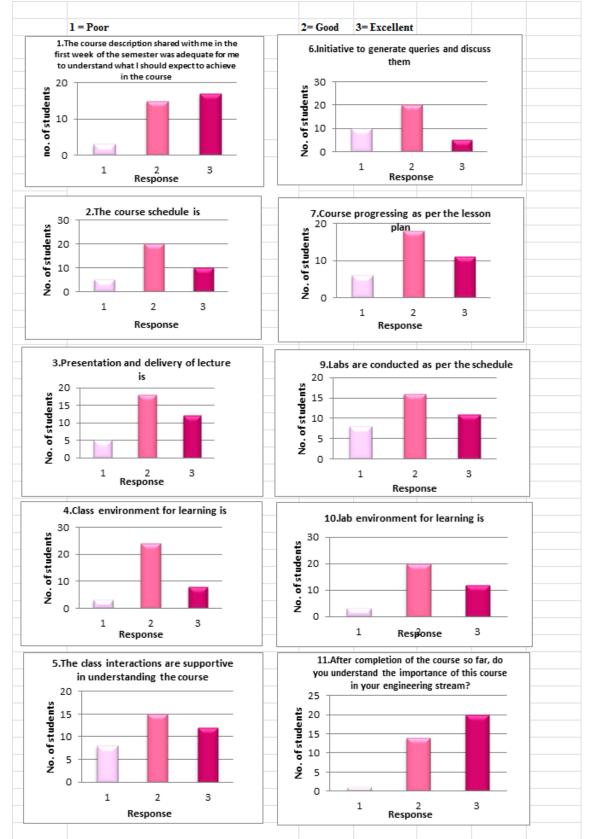
- Involving them to solve complex numerical problems.
- Motivate them to write paper for publications. Thus they got the knowledge about the topic and know the emerging technologies, find the gap and try to bridge it.
- Giving Board work or power point presentation on a given topic.
- Bright students are involved to boost up the weak students. Sometimes it is the measuring parameter for the bright students that how much extent they can lift the weak students.

(xc) Efforts to keep students engaged

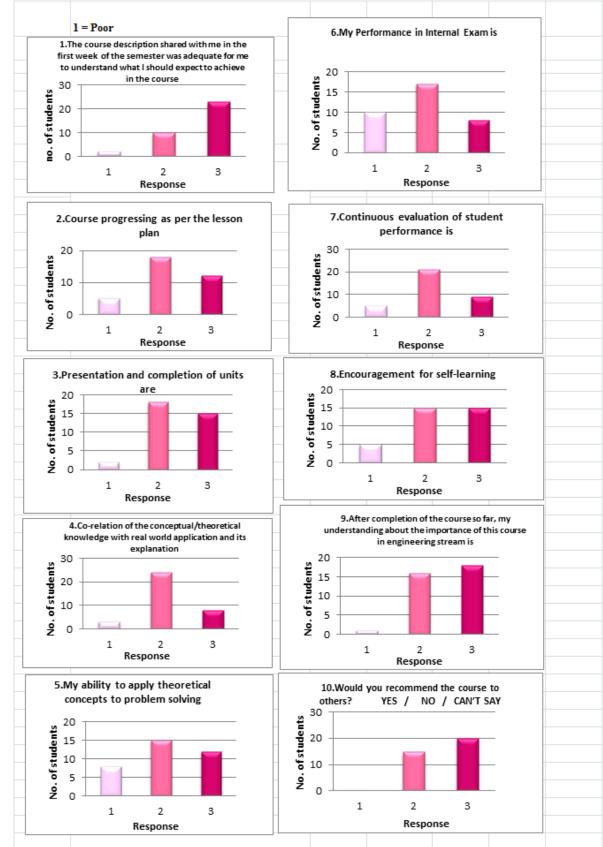
- Giving numerical problem or writing something on a topic and finally the copies are checked by other students arbitrarily chosen. The accepted answer will be finally explained by few of them.
- Providing Questionnaire session. Any student may be asked to answer the question. Other students will be randomly chosen to justify the answers.
- To write the questions they may have and try to find out the solutions after discussion among them.

- 81% students have attained the set target of 70% marks for CO1
- 77% students have attained the set target of 70% marks for CO2
- 62% students have attained the set target of 60% marks for CO3
- 79% students have attained the set target of 75% marks for CO4
- 97% students have attained the set target of 95% marks for CO5

(xii) Analysis of Students performance in the course (University Results)


	Target Course Outcome%	TOTAL STUDENTS	TOTAL STUDENT WHO ATTAINED OUTCOME	% STUDENTS WHO ATTAINED THE OUTCOME
University	70%	31	28	90%

• 90% students have attained the set target of 70% marks for University Exams


(xi) Analysis of Students performance in the course (Internal Results)

(xiii) Analysis of Student Feed Back

Formative:

Summative:

CO-Based:

(xiv)Teacher Self-Assessment (at the completion of course)

From the graphical analysis of the results obtained, it can be seen that most of the course outcome have been achieved successfully by the students but the set target for CO 3 has just touched the attainment level due to difficulty in understanding the analog VLSI circuits to which they are exposed for the first time.

(xv) Recommendations/Suggestions for improvement by faculty

• More emphasis should be given to clear the concepts related to Analog VLSI circuits.

INTERNAL ASSESMENT RECORD

Subject with code: *Microelectronics and VLSI Designs* (EC- 702)

Semester : 7thSem, 2016 Discipline: ELECTRONICS & COMMUNICATION ENGINEERING

S.			Atten	dance		Marksi	in Internal	Test		
5. N 0	Name	Roll No.	Total	Marks (5)	l (30)	II (30)	Avg. of 2 tests (30)	Internal Marks (15)	Quiz (10)	Total (30)
1.	ANKITA SINGH	11900313002	78%	5	16	16	16	8	8	21
2.	APURBA ROY	11900313003	75%	5	24	24	24	12	10	27
3.	ARNAV GHOSH	11900313004	81%	5	24	21	22.5	11.25	8	24.25
4.	ARUNDHUT EE DUTTA	11900313005	80%	5	25	21	23	11.5	10	26.5
5.	AVEEK SAHA	11900313006	90%	5	22	23	22.5	11.25	9	25.25
6.	AVERI RAY	11900313007	82%	5	15	14	14.5	7.25	10	22.25
7.	AYANTIKA DEY	11900313008	75%	5	26	27	26.5	13.25	10	28.25
8.	ΒΙΚΚΥ ROKA	11900313009	85%	5	20	18	19	9.5	9	23.5
9.	BIKRAM CHAKRABO RTY	11900313010	83%	5	20	19	19.5	9.75	9	23.75
10	DEBABRAT A BANERJEE	11900313011	92%	5	25	22	23.5	11.75	8	24.75
11.	DEBASHISH MUKHERJE E	11900313012	80%	5	23	18	20.5	10.25	8	23.25
12.	DHRITIKAN A DAS	11900313014	96%	5	23	20	21.5	10.75	10	25.75
13	DIBAKAR SAHA	11900313015	75%	5	20	20	20	10	10	25

					1	1	1		1	
14.	DIPAYAN BHATTACH ARYA	11900313016	79%	5	25	22	23.5	11.75	8	24.75
15.	DISHA MANDAL	11900313017	86%	5	22	26	24	12	10	27
16.	KUNDAN KUMAR CHOURASIA	11900313019	89%	5	27	26	26.5	13.25	10	28.25
17.	MANORANJ AN KUMAR	11900313020	75%	5	24	21	22.5	11.25	6	22.25
18.	MAYANK KUMAR	11900313021	76%	5	19	24	21.5	10.75	10	25.75
19.	MD NASIR KHAN	11900313022	81%	5	24	23	23.5	11.75	10	26.75
20.	MONA	11900313023	90%	5	21	20	20.5	10.25	8	23.25
21.	MUNNA PRASAD KOIRI	11900313024	82%	5	22	22	22	11	9	25
22.	NAVIN KUMAR	11900313025	85%	5	21	22	21.5	10.75	9	24.75
23.	NIDHI PRIYA	11900313026	75%	5	20	20	20	10	9	24
24.	PANKAJ GUPTA	11900313028	81%	5	25	16	20.5	10.25	9	24.25
25.	PARTHA SARMA	11900313029	85%	5	20	18	19	9.5	7	21.5
26.	PRADYUT DATTA	11900313030	84%	5	21	18	19.5	9.75	8	22.75
27.	PRAGATI KUMARI	11900313031	85%	5	25	24	24.5	12.25	9	26.25
28.	PRAGYA ROY CHOWDHU RY	11900313032	83%	5	22	20	21	10.5	9	24.5
29.	PRANOY	11900313033	96%	5	19	23	21	10.5	9	24.5

	DAS									
30	PRAVEEN KUMAR OJHA	11900313034	95%	5	23	24	23.5	11.75	7	23.75
31.	SOUVIK BOSE	11900314044	75%	5	22	14	18	9	9	23

RECORDS OF QUIZ

Subject with code: Microelectronics and VLSI Designs (EC- 702)

&

VLSI Design Lab(EC792)

Semester : 7thSem, 2016 Discipline: ELECTRONICS & COMMUNICATION ENGINEERING

	Nama	Dell No	01	0	0	0	0
SI. No	Name	Roll No.	Quiz1	Quiz2	Quiz3	Quiz4	Quiz5
1.	ANKITA SINGH	11900313002	1	1	2	2	2
2.	APURBA ROY	11900313003	2	2	2	2	2
3.	ARNAV GHOSH	11900313004	2	2	1	1	2
4.	ARUNDHUT EE DUTTA	11900313005	2	2	2	2	2
5.	AVEEK SAHA	11900313006	2	2	1	2	2
6.	AVERI RAY	11900313007	2	2	2	2	2
7.	AYANTIKA DEY	11900313008	2	2	2	2	2
8.	ΒΙΚΚΥ ROKA	11900313009	2	2	1	2	2
9.	BIKRAM	11900313010	2	2	1	2	2

	CHAKRABO RTY						
10.	DEBABRAT A BANERJEE	11900313011	1	2	1	2	2
11.	DEBASHISH MUKHERJE E	11900313012	2	2	1	1	2
12.	DHRITIKAN A DAS	11900313014	2	2	2	2	2
13.	DIBAKAR SAHA	11900313015	2	2	2	2	2
14.	DIPAYAN BHATTACH ARYA	11900313016	1	1	2	2	2
15.	DISHA MANDAL	11900313017	2	2	2	2	2
16.	KUNDAN KUMAR CHOURASIA	11900313019	2	2	2	2	2
17.	MANORANJ AN KUMAR	11900313020	1	1	1	1	2
18.	MAYANK KUMAR	11900313021	2	2	2	2	2
19.	MD NASIR KHAN	11900313022	2	2	2	2	2
20.	MONA	11900313023	1	2	1	2	2
21.	MUNNA PRASAD KOIRI	11900313024	2	1	2	2	2
22.	NAVIN KUMAR	11900313025	2	2	1	2	2
23.	NIDHI PRIYA	11900313026	2	2	1	2	2
24.	PANKAJ GUPTA	11900313028	2	1	2	2	2

25.	PARTHA SARMA	11900313029	1	2	1	2	1
26.	PRADYUT DATTA	11900313030	2	1	1	2	2
27.	PRAGATI KUMARI	11900313031	2	1	2	2	2
28.	PRAGYA ROY CHOWDHU RY	11900313032	2	2	1	2	2
29.	PRANOY DAS	11900313033	2	1	2	2	2
30.	PRAVEEN KUMAR OJHA	11900313034	1	1	1	2	2
31.	SOUVIK BOSE	11900314044	2	2	2	1	2

	LIST OF PRACTICALS Subject with code: VLSI Design Lab (EC- 792) Semester : 7 th Sem, 2016 Discipline: ELECTRONICS & COMMUNICATION ENGINEERING							
SI.	Details of Experiment(s)	Hours allotted						
1	Familiarity with Spice simulation tool& EDA tools	6.						
2	Spice Simulation of Inverter , NAND , NOR Gates and different analysis using EDA Tools	6						
3	Design of CMOS XOR/XNOR Gates and different analysis using EDA Tools	3						
4	Design of CMOS Full adder and different analysis using EDA Tools	3						
5	Design of CMOS Flip flops (R-S ,D , J-K)and different analysis using EDA Tools	3						
6	Design of 8 bit synchronous Counter and different analysis using EDA Tools	3						
7	Design of 8 bit bi-directional register and different analysis using EDA Tools	3						
8	Design of a 12 bit CPU with few instructions and implementation and validation on FPGA	3						

Sessional/Practical Performance Record

Subject with code: VLSI Design Lab (EC- 792)

Semester : 7thSem, 2016 Group: A

Discipline: ELECTRONICS & COMMUNICATION ENGINEERING

SI.N	Name	Roll No.				Marl	ks in	exp	erim	entati	on
ο.			1	2	3	4	5	6	7	8	TOTAL (40)
1.	ANKITA SINGH	11900313002	5	4	5	5	4	3	3	2	32
2.	APURBA ROY	11900313003	4	4	5	5	5	5	5	2	35
3.	ARNAV GHOSH	11900313004	4	5	4	5	4	4	4	2	32
4.	ARUNDHUTEE DUTTA	11900313005	4	5	4	4	3	4	4	2	30
5.	AVEEK SAHA	11900313006	4	5	4	4	5	5	4	2	33
6.	AVERI RAY	11900313007	4	5	4	4	4	4	4	2	31
7.	AYANTIKA DEY	11900313008	3	0	3	2	4	4	5	2	23
8.	ΒΙΚΚΥ ROKA	11900313009	4	5	5	4	4	4	3	2	31
9.	BIKRAM CHAKRABORTY	11900313010	4	5	5	5	4	3	3	2	31
10.	DEBABRATA BANERJEE	11900313011	4	5	5	5	5	5	5	2	36
11.	DEBASHISH MUKHERJEE	11900313012	4	5	5	5	5	4	4	2	34
12.	DHRITIKANA DAS	11900313014	4	5	5	5	4	5	4	2	34
13.	DIBAKAR SAHA	11900313015	4	5	4	4	4	3	3	2	29
14.	DIPAYAN BHATTACHARY A	11900313016	4	5	5	4	4	5	4	2	33
15.	DISHA	11900313017	4	5	5	4	4	5	3	2	32

	MANDAL										
16.	KUNDAN KUMAR CHOURASIA	11900313019	4	5	5	4	4	5	4	2	33
17.	MANORANJAN KUMAR	11900313020	4	5	5	4	5	5	5	2	35
18.	MAYANK KUMAR	11900313021	4	5	5	5	5	5	5	2	36
19.	MD NASIR KHAN	11900313022	4	5	5	5	5	4	4	2	34
20.	MONA	11900313023	4	5	5	5	4	4	3	2	32
21.	MUNNA PRASAD KOIRI	11900313024	4	5	5	5	5	4	5	2	35
22.	NAVIN KUMAR	11900313025	4	5	4	4	4	4	3	2	30
23.	NIDHI PRIYA	11900313026	4	5	5	5	5	4	4	2	34
24.	PANKAJ GUPTA	11900313028	4	5	4	4	4	4	3	2	30
25.	PARTHA SARMA	11900313029	4	3	3	2	4	3	3	2	24
26.	PRADYUT DATTA	11900313030	4	5	4	4	4	4	3	2	30
27.	PRAGATI KUMARI	11900313031	4	5	5	5	4	4	3	2	32
28.	PRAGYA ROY CHOWDHURY	11900313032	4	3	4	3	4	4	4	2	28
29.	PRANOY DAS	11900313033	4	5	5	5	5	4	3	2	33
30.	PRAVEEN KUMAR OJHA	11900313034	4	5	5	5	5	5	5	2	36
31.	SOUVIK BOSE	11900314044	4	3	3	4	3	4	3	0	24

NA	NAME WITH ROLL Nos. OF STUDENT WHOSE ACADEMIC PERFORMANCE IS NOT SATISFACTORY										
SI.	Name of Student	Roll No.	Remedial measures taken by teacher								
1	BIKRAM CHAKRABORTY	11900313010	 Additional doubt clearing sessions 								
2	ANKITA SINGH	11900313002	 Providing extra Viva-Voce to students with poor attendance. Guiding them through previous 								
3	PARTHA SARMA	11900313029	 question papers Highlighting important and frequently asked questions 								

CERTIFICATE

I, the undersigned, have completed the course allotted to me as shown below

SI. No.	Semester	Subject with Code	Total Modules	Remarks
1.	7th	<i>Microelectronics and VLSI Designs</i> (EC- 702) &VLSI Design Lab (EC- 792)	04	

Date :	
	Signature of Faculty

Submitted to HOD		
Certificate by HOD		
I, the undersigned, cert	tify that Prof. Manas kumar Parai & Prof. Saroj	
Mondal have completed the course work allotted to them satisfactorily/		
not satisfactorily.		

Date :	
	Signature of HOD

Submitted to Director			
Date :	Signature of Director		